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An approximate method is proposed for treating the non-orthogonality of atomic functions and 
correlation of n-electrons by means of perturbation theory and Pariser-Parr-Pople (PPP) method as a 
zero approximation. The formula derived for the ground state energy of n-systems is suitable to describe 
a number of effects, which the PPP theory, in principle, cannot account tor. In particular, it is shown 
how such intermolecular phenomena like exchange repulsion and dispersion interaction can be 
accounted for in MO method. 

The ground state energies of n-electron systems are calculated with and without an account of 
n-electron correlation. If for the atomic functions non-orthogonality is taken into consideration the 
experimental values of these energies can be described using a "spectroscopic" set of standard calcula- 
tion parameters. Probably, within the framework of this method, it is possible to describe simultaneously 
and consistently the spectroscopic, thermochemical and kinetic data. 

Fiir die Behandlung der Nicht-Orthogonalit~it von Atomfunktionen und die Korrelation der 
n-Elektronen wird eine N~iherungsmethode vorgeschlagen, bei der die Pariser-Parr-Pople- (PPP)- 
Methode als nullte N~iherung in einer St6rungsrechnung verwendet wird. Die Formel flit den Grund- 
zustand yon n-Systemenist f'tir die Beschreibung einiger Effekte geeignet, die in der P PP-Beschreibung 
nicht beriicksichtigt werden. Insbesondere wird gezeigt, wie solche intermolekularen Ph~inomene wie 
AbstoBung infolge Anstausch und Dispersions-Wechselwirkung bei der MO-Methode beriicksichtigt 
werden k6nnen. Die Energie des Grundzustandes yon n-Elektronensystemen wird mit und ohne 
Beriicksichtigung der n-Elektronenkorrelation berechnet. Wenn fiir die Atomfunktionen die Nicht- 
Orthogonalit~it beriicksichtigt wird, so k6nnen die experimentellen Werte dieser Energie mit Hilfe 
eines ,,spektroskopischen" Satzes yon Standardparametern erhalten werden. Vermutlich ist es mtiglich, 
im Rahmen dieser Methode, die spektroskopischen, thermochemischen nnd kinetischen Daten ein- 
heitlich und konsistent zu beschreiben. 

On propose une m6thode approch6e pour traiter la non orthogonalit6 des fonctions atomiques 
et la corr61ation des 61ectrons n au moyen de la th6orie des perturbations utilisant l'approximation de 
la m6thode de Pariser-Parr-Pople comme ordre z6ro. La formule obtenue pour l'6nergie du fonda- 
mental permet de d6crire un certain nombre d'effets dont la th6orie PPP ne peut rendre compte. En 
particulier on montre comment certains ph6nom6nes intermol6culaires comme la r6pulsion d'6change 
et la dispersion peuvent ~tre pris en consid6ration. 

L'6nergie de l'6tat fondamental des syst6mes d'61ectrons nes t  calcul6e avec et sans corr61ation. 
Si la non orthogonalit6 des fonctions d'onde atomiques est incluse, les valeurs exp6rimentales de ces 
6nergies peuvent 6tre d6crites en utilisant un ensemble ~spectroscopique)) de param6tres standards. 
Dans le cadre de cette m6thode il est probablement possible de d6crire simultan6ment les propri6t6s 
spectroscopiques, thermochimiques et cin6tiqnes. 

Introduction 

T h e  a p p r o x i m a t i o n ,  u s i n g  t h e  m i n i m a l  A O  b a s i s  se t  for  al l  v a l e n c e  e l e c t r o n s  

(i.e. i n c l u d i n g  t h e  v a l e n c e  e l e c t r o n s  A O ' s  on ly )  b u t  f ree  f r o m  a n y  o t h e r  l i m i t a t i o n s  

is, p r o b a b l y ,  t h e  n a t u r a l  l i m i t  to  w h i c h  s e m i - e m p i r i c a l  m e t h o d s  o f  q u a n t u m  

c h e m i s t r y  c o u l d  b e  e x t e n d e d .  I f  i t  is so,  t h e n  t h e  p o t e n t i a l i t i e s  o f  s e m i - e m p i r i c a l  

t h e o r i e s  a r e  fa r  f r o m  b e i n g  e x h a u s t e d .  W e  w o u l d  l ike  to  m a k e  u se  o f  s o m e  o f  t h e s e  
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possibilities to improve the Pariser-Parr-Pople semi-empirical procedure (PPP), 
which has become already a standard method to treat the electronic structure of 
n-systems. 

There are a number of physical effects which the PPP theory cannot explain 
by any selection of parameters. 

1) So as to make the calculations of n-systems bonding energy agree with the 
experiment, such a value of the resonance parameter fl should be used which 
significantly differs from the value used for describing their optical and electric 
properties [1, 2]. 

2) The interaction energy of two non-polar alternant n-systems, calculated 
by the PPP method, is always negative and vanishes whenever the exponentially 
decreasing intermolecular overlap integrals vanish [3]. Thus two important 
effects are lost, viz, a) The exponential repulsion at small and medium distances R, 
which is usually called as "exchange" repulsion, and b) London dispersion forces, 
corresponding to an attraction proportional to R -6 at large intermolecular 
distances. 

The problem of the reactivity of organic molecules stimulated our interest 
in this topic. Usually, in quantum chemistry, this problem is treated by means 
of so-called reactivity indices. Perhaps, this treatment is no more perspective, and 
further development seems to consist in examining the elementary reaction act 
and the transition states by semi-empirical methods. Consequently, such methods 
should be adequate enough to describe intermolecular interactions. 

Today, a large number of papers exist which analyse the PPP theory approxi- 
mations. Our purpose is to unify these results in a form suitable for practical 
applications. Such an improved theory should be capable of describing theo- 
retically the above mentioned effects in principle, irrespective of selection of 
parameters and at the same time should retain such undoubted merits of PPP 
theory as simplicity and universality. 

Formulae and Notations 

One-electron space functions will be labelled by latin indices (2,, ~Pl ...), and spin functions by 
greek indices (2~, ~Pv ..-), with the convention that 2, --- 2ra .... where the spin function (r can take two 
different Values. Let the minimal basis set of 2p AO X, be given. It is at once convenient to go over to 
the orthogonal basis set of Ltiwdin orbitals 

(2,) = (Zr)S -'2 , 

where (...) denotes a row matrix, and S is the matrix of overlap integrals. Let us write the model 
n-electron Hamiltonian in the second quantization representation: 

1 + ~i= Z v.~+ Et, h,J~+ 2,,~ 
r , s > r  #v 

~(uvlov)= f f ~"(1)-s l~-'~(l)'~'(2)ala2rl 2 

(1) 

(2) 

Vr~ is the effective repulsion energy of the core nuclei r and s, h is the one electron core Hamiltonian, 
l~ and l~ are the creation and annihilation operators of the spin-orbitals 2,. 
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Self-consistent MO's r are obtained from the orbitals 2 r by means of an unitary transformation 
C with the coefficients cry: 

(~,) = (2,) C .  (3) 

In the ((p,) basis the Hamiltonian (1) becomes 

1 _ _  + + 

H= ~ V,~+ ~,f+'Ph,, f~+~ ~ f[,fo ~(#vloz)f~f~. (4) 

The notations used for the matrix elements in (4) are similar to that used in (2) ;f  + and f~- are the 
creation and annihilation operators of spin orbitals (p,. 

The MO's q~, are the eigenfunctions of the one-electron operator F (~ with eigenvalues e,: 

F(~ E V,~+~,f+euf~, �9 (5) 
r , s > r  # 

Let us consider a two-electron operator F (1), diagonal in the configurational basis: 

1 _ _  + + .  

Fro= ~ V~ + ~f~+ %, , f ,  + ~ ~,f[,f~ [~(Mzlvv)- O(#vlv#)]f,f,. (6) 
r , s > r  II -- #v  

This is really the Hamiltonian of a single configuration approximation: 

where [~u> is a Slater determinant built from spin orbitals (pg. 
The solution of the ~-electron problem in this approximation consists in finding (p~, i.e. the self- 

consistent C matrix. Thus it is necessary to introduce the values of matrix elements (2) as parameters. 
It is sufficient to give the integrals of space functions 2~ only. According to Pople [4], we have 

Xh,, = IV,- ~ N~(rrlss) -~ h~, 
s r  

~h~ = #~, (7) 

X(rtlsu) = 6r,6~(rrlss), 

g~ = N~NArrlss). 

The matrix elements without the super indices relate to atomic basis set and are given parametrically. 
The energy of an isolated AO - the value W, - is equal to 

IV, = 5 ~(1) [ -  V z + U + ] X,(1)dl, 

where U + is the atomic core potential. The parameter/~,~ vanishes for all non-neighbouring atoms. The 
integral quantity N, gives the number of electrons which the r-atom contributes to the total g-system. 

In most of the recent semiempirical calculations, the approximate Hamiltonian (6) is used instead 
of the exact Hamiltonian (4), and the matrix elements are approximated according to formulae (7). 
These are two independent approximations, and we shall examine them separately and introduce the 
necessary corrections within the framework of perturbation theory. 

Non-Orthogonafity of Atomic Functions 

I n  c a l c u l a t i n g  t h e  m a t r i x  e l e m e n t s  (2), u s u a l l y  t h e  m a t r i x  S -1/2 is e x p a n d e d  as  

a ser ies  [5 ] .  AI~ a n a l y s i s  [5,  3]  s h o w s  t h a t  t h e  s e c o n d  a n d  t h i r d  r e l a t i o n s  in  (7) 

a r e  a c c u r a t e  u p  t o  t h e  o r d e r  o f  S 3, w h e r e  S is t h e  s t a n d a r d  v a l u e  o f  o v e r l a p  i n t e g r a l  

( in a 7r-system S ~ 0.25). W h e n  ~hrr is e x p a n d e d  as  a series ,  we  h a v e  

ahrr hr~+ ~ U srr 2 hs, Srs + h , ,  2 2 1 ~, S2s(hs s_hr~)+O(S a) = - S,~ + . 
s ~ = r  " s g = r  s C - r  zt" s ~ r  
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Summation is carried out over all atoms s adjacent to r. The non-diagonal matrix 
elements of the core Hamiltonian in an atomic basis are denoted by h~ and Us.,, 
is the penetration integral of order S 2 [5], and Sr~ - the overlap integral. 

If the system is not too polarised, the inequality (h,r - h~)/h,, < S holds. Also 
the following estimation is true: h~ - Sr, h** = fl,~ + 0(S 3) [5]. 

Then 

Xhr~ = h~, + ~ (U~,~r - S,sfl,~) + 0($3). 
s ~ r  

The last sum of the order ofS 2 is not accounted for in (7). According to (3), we have 

~~ = 2 "CriCsithrs " 
r8 

Hence, the correction to '~ u is equal to 

A~~ = ~ cric,i(U~,,~ - S,~f lJ+O(S3).  
r,s'/:r 

The correction to the total energy Ep of the configuration l T J), calculated by the 
Pople method, to the first order of perturbation theory [6] amounts to 

E - E  e = y~. ( , ~ [ f f  AOhuuful~) 
# 

or taking the commutation relations for f § and f into account 

E - E e =  ~, [(qrU, . ,~+q~Ur,J-(q,+q~)S~f l~J+O(S3) ,  (8) 

where q~= ~ g~uc,, is the atomic charge of the Ikg) configuration (summation 
~=1 

over all the occupied spin-orbitals). 
Let us add one more correction ~ [V~-N~N~(rrlss)], due to the error in 

r , s>r  

the last equation of (7). By making use of the identity U,.~= U,+~+N~(rrlss), 
where U + is the atomic core potential, let us introduce the following notation 

U + Qr~ = q . . . . .  + q~Ur+.~ + q~q~(rrlss) + g~ (9) 

for the total atomic electrostatic interactions, and 

qr~ = (qr -- Nr) (q~ - Ns) (rr I ss) 

for the electrostatic interactions of resultant atomic n-charges. After a few simple 
transformations, we have 

E = E p +  E [ Q r ~ - ( q r + q ~ ) f l r s S j -  ~ qrsq-O(S 3) 
r , s>r  r , s>r  

or using the expression of E e [4]: 

E =  ~ q ,  W~+ ~-q,(rr lrr)  + 2  ~ p ,J3 , , -  ~ ~, p,~(rrlss) (10) 
r , s>r  r , s>r  

+ Y~ [Q~-(q~+q~)#~&~]+o(s~), 
r , s>r  
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where P ,s-  are bond orders. In the ground state of homoatomic alternant systems, 
where q, = N, = 1, and qrs = 0, 

E = E p - I -  E [Q,.s-2fl,.sSrs]+O(S3) �9 (11) 
r , s > r  

Origin of the Activation Energy 

Let us confine ourselves only to a discussion of non-polar systems, for which 
the ground state energy is given by the expression (11). The first term Qrs in the 
sum corresponds to the Coulomb pair interaction of atoms when q, = N, = 1. It 
coincides with the Coulomb integral of the valence bond method. The second 
term corresponds to exchange repulsion. In practical calculation, we can assume 
that firs = (flo/So)Srs, where to  and So relate, fo r example, to C -C  bond in benzene. 
But it is very cumbersome to compute Qrs. According to (9), Q,s is a small difference 
of two large quantities, and it is very sensitive to the selection of the orbital 
exponents. Therefore, in such a situation, it is expedient to take recourse to 
empirical estimation. As Q,s is proportional to S,. 2, let us write 

E = E v + 7  ~. 2 S,s + 0(S3) . (12) 
r ,s>r 

It follows from (11) that the factor 7 is constant in different alternant systems; it 
can be found from the experiment. It will be shown further that 7 > 0, so including 
of the non-orthogonality correction gives repulsion. 

In standard calculations, where the geometry of the molecule is regarded as 
fixed, this correction vanishes when calculating the energy difference. For  example, 
in treating the energy of the low lying optical transitions in alternant systems by 
the Pople method, the charges qr are constant and equal to the unit in the first 
excited configuration as in the ground state. For  such an excited state, the equali- 
ties (11) and (12) follow from the general formula (10) again, and the correction is 
excluded from the transition energy expression. 

But, it is very significant when the processes are studied, in which the environ- 
ment of atoms composing the system changes. Let us consider the interaction 
energy U of two re-systems A and A' when they approach each other. If the intra- 
molecular interaction does not change, then 

= S 2 0(S,~,,). (13) U A + y ~  , / +  
rr" 

Summation is carried out over the atomic pairs r and r' from the different 
molecules. A is the interaction energy of the Pople approximation 

= E A A ' -  E A" . 

In fact, this is the resonance energy and it is easy to show that A is always less than or 
equal to zero [3]. Thus, in the Pople approximation, it is not possible to get a 
repulsion and explain the origin of activation barriers in bimolecular reactions. 
Formula (13), combining both attraction and repulsion, can, in principle, be used 
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for calculating the activation energy. Notice that in computing A, all intermolecular 
integrals fl,,, have to be considered, while inside a molecule fl,s is assumed to be 
equal to zero for all non-adjacent atoms according to the Pople theory. 

Now let us explain how we estimated the accuracy of (13). Let us suppose, that 
we succeeded in computing the Sa-order corrections to the matrix elements (7) 
corresponding to the interactions inside each molecule. In treating the difference 
of energies U, such corrections are included with the factor (P,s-P~ (matrix 
elements of one-electron operators), or (p,.sp~,,- o o P,.sP,,,) (two electron matrix 
elements), where the bond order p,s has been calculated in a unified system A A ' ,  
and pr ~ - in isolated molecules A or A'. This can be argued in the same manner 

o 0(S2r,) [7]. Thus, the error as we did to prove (8). But inside a molecule Pr~ = Pr~ + 
due to intramolecular interaction is of the order St2, �9 S 3, but that due to inter- 
molecular interaction is of the order 3 S,r,. When S3,~ ~ Srr, .we obtain the error 
estimation given in (13). 

Correlation of ~-Electrons 

A complete solution to the many-electron problem for a model Hamiltonian (4) 
reduces to the configuration interaction problem. The computational difficulties 
involved are well known. But when the values of the parameters (7) are those 
characteristic of n-systems, then the ground state correlation energy is obtained 
with good accuracy already in the second order of perturbation theory. 

The selection of zero approximation for the perturbation theory is not unique. 
One-particle Hartree-Fock operator F ~~ (5) does not give a good convergence. 
Therefore, it is expedient to use a two-particle operator F ~1) (6) [-8, 9], which is 
diagonal in configurational basis, as a zero approximation. Here, the perturbation 
V =  H -  F ~1) has no diagonal part, and the first order correction vanishes. In the 
second order the correlation energy of the ground state 17/o) is equal to 

�9 t Eo - Eu  
(14) 

and it is sufficient to confine the summation to double excited configurations 
I7~M) only. As it will be shown in the next section, formula (14) gives more than 
90 % of correlation energy and the correlation energy of re-system amounts to 
about 10% of bond energy. Since S ~ 0.25, the correction of order S 2 due to non- 
orthogonality, and the correlation correction are close with respect to the order of 
magnitude. Hence, they have to be simultaneously accounted for. 

Strictly speaking, to calculate E~o r it would be proper  to use in the denominator 
the energies calculated by formulae (10)-(12) in which non-orthogonality has been 
already accounted for. However, it is simpler to use the Ee energy calculated by 
the Pople method yielding in practice the same results, since the non-ortho- 
gonality correction is small when compared to El, and has a tendency to com- 
pensate in calculation of the energy differences. In this last approximation, which 
we shall make use of, the correction due to non-orthogonality and correlation 
energy are independently determined. 
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Bonding Energies of  ~-Systems and Estimation of  

We shall apply the formulae obtained to study the ground state bonding 
energies E= of re-electron systems. Until recently, these values were not system- 
atically calculated, probably due to the difficulties encounted in their experimental 
evaluation. The difficulty lies in determining the bonding energy E~ of the ~r-core, 
which has to be subtracted from the experimental atomisation energy E, so as to 
find E~: 

E~ = Ea - E~. (15) 

It is very essential to have reliable values of equilibrium energies of C-C  (~cc) 
and C - H  (eCn) bonds formed by carbon in sp 2 state. Furthermore since the C-C  
bond length in re-systems is shorter than the equilibrium one, a necessary energy 
correction has to be introduced due to compression. So, the values of equilibrium 
length (to) and of force constant (f)  are needed (or Morse constant, if compression 
energy is determined by Morse formula). Today, two sets are found in the literature 
for the values of these constants. The first one proposed by Dewar et al. [1, 10], 
is based on multiple interpolations, and gives 

ecc = 97.0 Kcal/mol,  

acH = 100.5 Kcal/mol,  
r o = 1.49 A,  (16) 

f = 6.03 x 105 dyne/cm. 

The second set, proposed by Lorquet [2], is based on a statistical treatment of 
experimental bond lengths and atomisation energies values for hydrocarbons 

ecc = 92.2 Kcal/mol,  

Sen = 99.5 Kcal/mol,  
r0 = 1.52 A,  (17) 

f = 4.90 x 105 dyne/cm. 

The differences in values of quantities as given by (16) and (17) lead to considerable 
disparity in the estimation of experimental re-energy by formula (15). However, 
comparing these estimates with calculated E~ values in the Pople approximation, 
both Dewar and Lorquet came to the same conclusion, namely, that it is not 
possible to reproduce the "experimental" values of ~-energy if the usual spectro- 
scopic parameters fl and (rr[ss)  are used in the calculation. The experimental and 
calculated values coincided, when these authors took the value of standard 
resonance parameter in benzene to be flo = - 1.6 + - 1.7 eV instead of the spectro- 
scopic value flo ~ -2 .4  eV. 

In our calculation, we made use of the following parameter values given by 
Goodman [11, 12]. 

/3(1.39 A) = -2 .37 eV, 

/3(1.34 A) = -2.78 eV, 

(11[11) = 11.06 eV, 

(11122) (1.39 A) -- 6.86 eV, 

(11[ 22) (1.34 A) = 6.94 eV, 
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which  r e p r o d u c e  well  the spec t ra  and  ion i sa t ion  po ten t ia l s  of  n-systems.  E~ 
energies were ca lcu la ted  with  and  wi thou t  an account  of  corre la t ion .  

Co r r e l a t i on  was t aken  into  account  accord ing  to  (14). Wheneve r  it  was 
possible,  we c o m p a r e d  resul ts  with the "exact"  ca lcula t ion,  i.e. with the exact  
e igenvalue  of  the  g r o u n d  s ta te  energy for the  m o d e l  re-electron H a m i l t o n i a n  (4), 
o b t a i n e d  by the comple t e  so lu t ion  of  the conf igura t ion  p rob lem.  

The  ca lcu la ted  values  widely  differ f rom the "exper imen ta l "  values given by  
D e w a r  o r  Lorque t .  Al though ,  this d i spa r i ty  can  be r emoved  by a special  select ion 
of/~, we p roceede  in an  ent i re ly  different manner .  Let  us suppose  tha t  this d i spa r i ty  
is due  to some phys ica l  effect, no t  a ccoun ted  for in the Pople  method .  Since cor-  
re la t ion  on ly  increases  the  er ror ,  we have  to invest igate  the role o f  non -o r tho -  
gonal i ty .  Accord ing  to (12) we shall  r egard  tha t  the  differences in ca lcu la ted  and  
exper imenta l  values  of  n-energies  a re  p r o p o r t i o n a l  to  the sum of  squares  of  the 
ne ighbour ing  a t o m s  over l ap  in tegra ls :  

Eexp Ecal Z 2 - - _ ~  = y Srs. 
r , s > r  

The respect ive  p lo t s  a re  shown in Fig. 1. G o o d  s t ra ight  lines are ob t a ined  which 
a lmos t  pass  t h r o u g h  the origin,  and  their  s lope gives the values of  ?, which varies 
depend ing  on the expe r imen ta l  es t imates  of  E .  (according  to D e w a r  or  Lorquet) .  

Table. Comparison of experimental and calculated bonding energies (in Kcal/mol) 

Molecule Calculated values - E= Experimental values - E~ 
Exact Correlation Pople method According According 
calculation acc. to pertur- to Dewar to 

bation theory Lorquet 

Ethylene 89 90 81 45 57 
Trans-butadiene 178 176 161 88 116 
Benzene 304 303 284 146 197 
Styrene 396 371 190 256 
Naphthalene 518 488 245 336 
Anthracene 730 688 342 474 
Phenantrene 737 698 350 481 
1,2-Benzanthracene 900 451 621 
Naphtacene 887 450 620 
Triphenylene 913 456 627 
Chryzene 906 455 625 

Remarks. The experimental E~ values were determined by formula (15). E, energy of the a-core was 
calculated from data (16) and (17). Experimental values E a of atomisation energy were taken from [13] 
and corrected to 0 ~ K. The C-C bond lengthes were assumed to be: for ethylene 1.34 A; butadiene - 
1.35 A and 1.46 A; styrene (in chain) - 1.35 A and 1.46/~; all aromatic molecules - 1.39 A. 

If co r re l a t ion  co r rec t ion  is a d d e d  to the  ca lcu la ted  E .  value,  then the l inear  
dependency  is r e t a ined  (y-values, of  course,  change). This  c o r robo ra t e s  S inano~lu ' s  
s t a t ement  [14] tha t  co r re l a t ion  can be accoun ted  for by  a select ion of empi r i ca l  
H a r t r e e - F o c k  p a r a m e t e r s  values for the g r o u n d  state. 
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The I; values so found seem to be plausible. If Coulomb interactions Q,~ are 
neglected, then according to formula (11) and accepting/3,~ proportional to S~, 
we find 7 = 2/~o/S o ~ 18.4 eV. 

Estimates from Fig. 1, considerably lesser in values, can be regarded as a 
measure of the neutral atom Coulomb interaction contribution into the energy. 

10 

a) 
E e x p -  Eccltc, levi 

/ 
E/r exp- E caLc, levi 

0 

b) 

10 

,,I I 2 I I 2 

0 0,5 1 ESrs 0,5 1 ~K'Srs 
r,s>r r,s.r 

Fig. 1. Determination of the factor 7 from thermochemical data. a) data according to Lorquet 
7 = 8.51 eV (without correlation), 7 = 9.89 eV (with correlation), b) data according to Dewar 7 = 13.75 eV 

(without correlation), 7 = 14.19 eV (with correlation) 

It should be remembered that as follows from (9)-(12) 7 depends on the atomic 
r~-charges qr. Thus if treating the bonding energies of non-alternant or hetero- 
atomic re-systems our procedure needs several corrections. 

Dispersion Interactions 

Dispersion forces are typical correlation effects. Hartree-Fock interaction 
energy (13) vanishes at such distances, where the one-electron interactions pro- 
portional to St,, vanish. The n-electron contribution to dispersion energy can be 
defined as the change in correlation energy (14) in the unified system AA'  with 
respect to the isolated molecules A and A'. It would be interesting to investigate 
the connection of such a description with the classic London theory. 

The London theory is based on configurations built of one-electron functions, 
which are localised in the isolated molecules A and A'. On the other hand the 
MO's  found for the unified system AA'  are used in formula (14). 

Let us consider a model example. It is of no physical sence but illustrates 
well the manner in which the two descriptions can be compared. 

We treated the interaction of the n-systems of two ethylene molecules. The 
symmetry plane coincides with the plane of drawing. Angle e = 120 ~ 

CI C4 
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F r o m  the i n t e rmo lecu l a r  r e sonance  in tegra ls  only  fl23 was  t aken  into  account .  
The  M O  of  the c o m b i n e d  system, ca lcu la ted  by  the Pople  me thod ,  were  conver t ed  
into  the pa r t i a l ly  local ized equiva len t  o rb i ta l s :  

~o 1 = k q , ?  + ] / / 1  - kZq) ;  , 

~o~ = ~ ~o;- + k~oi ~ , 

q~3 = kq~- +] / /1  - k2q~ - , 

~o4 = V1 - k 2 q,/~ + k~o~, 

1 1 
where ~o? = T ~ ( ~  _+~2) and ~o~ = ? ~ ( ~ 3 - + 4 4 )  are the MO's  of isolated 

ethylene  molecules .  W h e n  k = 0.99, we o b t a i n  "c is -butadiene" ,  and  when k = 1, 

-0,1 

Fig. 2. Dispersion energy of two ethylene n-systems, as a function of the distance R. I the difference of 
the correlation energies of the combined system and isolated molecules. II the contribution of the local 
double exitations (London part of the correlation energy). 111 the stabilisation energy calculated in 

one-electron approximation 

Fig. 2a. Curve II in R -6 coordinate. The arrow showes the region coinciding in the main Fig. 2 
and in Fig. 2a 

- two "ethylenes" .  If  (p-orbitals  are  used, it  is a t  once poss ib le  to  separa te  f rom the 
sum (14) the L o n d o n  pa r t  a t  any  d is tance  R. These  are the  te rms  co r r e spond ing  to  
the local  doub le  ex i ta t ions  (Pl ~(P3 q~a~rP4 �9 The i r  con t r i bu t ion  is shown by 
curve I I  in Fig. 2. Curve  I is the  difference A Eco r of  the cor re la t ion  energy of  the  
c o m b i n e d  sys tem a n d  i so la ted  molecu les ;  the  con t r ibu t ions  of  all doub le  exita-  
t ions are  t aken  into  accoun t  in it. Curve  I I I  represents  the  s tab i l i sa t ion  energy 
A = A E,~ = E~ A ' -  E ~ -  E~' ca lcu la ted  accord ing  to  Pop le  me thod ,  and  is shown 
here for the  sake of  compar i son .  W h e n  R < 2 A, the re la t ive  con t r i bu t ion  of  cor-  
re la t ion  in the  in t e rac t ion  energy is small .  W h e n  R > 2.5 A and  A < E . . . .  curve I 
p rac t ica l ly  coincides  wi th  the  L o n d o n  curve II.  In this region,  in te rac t ion  energy 
changes  accord ing  to the  R - 6  law (Fig. 2a). 

Even if s y m m e t r y  is absent ,  a t r ans i t ion  f rom the M O ' s  of  the  unified sys tem 
to the o rb i ta l s  local i sed  in in te rac t ing  f ragments  is still possible.  Let  C be a n x n/2 
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matrix of coefficients of the occupied MO's of the system AA' with n centers 2 .  
Similarly B is a n x n/2 matrix of MO coefficients of isolated molecules A and A" 

EArl B =  

where the blocks A and A' belong to the respective molecules. We shall search 
for such a transformation U, that the quantity 

s p ( f J ~  - ~) ( c  v - n)  

is a minimum when the additional unitarity condition/~ U = I holds. The solution 
to this variational problem is 

U = Y - l C B ,  

where Y is hermitian matrix (Y = Y), and due to unitarity of U we have 

y2 = (~n/~c.  (18) 

The matrix CB, in general, is not hermitian. To find Y, let us diagonalize hermitian 
matrix CB BC by means of unitary transformation T: 

TCBBCT=Q 

(Q is a diagonal matrix), and then operate the matrix Q1/2 with inverse trans- 
formation 

Y = TQ1/2 ~. 

The matrix Y so found satisfies the condition (18). The matrix of orbital coefficients 
C ' = C Y - l C B  gives the best localised description of the unified system. This 
description, when R is great, becomes the London description. Vacant MO are 
also transformed exactly in the same way. 

Notice that it is always expedient to pass to the localised description before 
applying the perturbation theory, because in that case the convergence is the best. 

I thank Dr. I. E. Chlenov for his assistance in the calculations of r~-energies. I am grateful to Dr. W. 
H. Eugen Schwarz for useful discussion. 
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